全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Metamaterial Design Based on Electromagnetic Induction Transparency-Like Effect and Its Slow-Wave Performance

DOI: 10.4236/opj.2021.114006, PP. 79-88

Keywords: Electromagnetically Induced Transparency-Like, Metamaterial, Slow-Wave, Near-Field Coupling

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper proposes a new metamaterial design that can achieve electromagnetic induction transparency-like (EIT-like) effects in the microwave band. The unit structure of metamaterials consists of square rings and metal wires. The square ring acts as the “bright state” and the metal wire acts as the “dark state”. The destructive interference between the bright state and the dark state produces an EIT-like effect. In the simulation results, a transparent window centered at 4.00 GHz can be observed in the transmission spectrum. By studying the phase change of the transparent window, it is found that the group delay of the metamaterial structure can reach 0.39 ns at 4.00 GHz. This paper also studies the influence of the refractive index of the medium on the EIT-like effect. Numerical simulations show that such metamaterial is very sensitive to the refractive index of the medium, and the sensitivity is 15 mm/RIU. Our design can be extended to other frequency bands and may have potential applications in filtering, sensing, slow-light devices, and nonlinear optics.

References

[1]  Boller, K.J., Imamoğlu, A. and Harris, S.E. (1991) Observation of Electromagnetically Induced Transparency. Physical Review Letters, 66, 2593.
https://doi.org/10.1103/PhysRevLett.66.2593
[2]  Meng, F.Y., Wu, Q., Erni, D., et al. (2012) Polarization-Independent Metasurface Analog of Electromagnetically Induced Transparency for a Refractive-Index-Based Sensor. IEEE Transactions on Microwave Theory and Techniques, 60, 3013-3022.
https://doi.org/10.1109/TMTT.2012.2209455
[3]  Mun, S.E., Lee, K., Yun, H., et al. (2016) Polarization-Independent Plasmon-Induced Transparency in a Symmetric Metasurface. IEEE Photonics Technology Letters, 28, 2581-2584.
https://doi.org/10.1109/LPT.2016.2605740
[4]  Lu, W.B., Liu, J.L., Zhang, J., et al. (2016) Polarization-Independent Transparency Window Induced by Complementary Graphene Metasurfaces. Journal of Physics D: Applied Physics, 50, Article ID: 015106.
https://doi.org/10.1088/1361-6463/50/1/015106
[5]  Wang, W., Li, Y., Xu, P., et al. (2014) Polarization-Insensitive Plasmonic-Induced Transparency in Planar Metasurface Consisting of a Regular Triangle and a Ring. Journal of Optics, 16, Article ID: 125013.
https://doi.org/10.1088/2040-8978/16/12/125013
[6]  Guo, B.S., Loo, Y.L. and Ong, C.K. (2017) Polarization Independent and Tunable Plasmonic Structure for Mimicking Electromagnetically Induced Transparency in the Reflectance Spectrum. Journal of Optics, 19, Article ID: 105101.
https://doi.org/10.1088/2040-8986/aa82cb
[7]  Hao, Z., Gao, Y., Huang, Z., et al. (2017) Polarization-Independent Magneto-Electric Fano Resonance in Hybrid Ring/Disk Hetero-Cavity. Journal of Optics, 19, Article ID: 125002.
https://doi.org/10.1088/2040-8986/aa952a
[8]  Kang, M., Li, Y.N., Chen, J., et al. (2010) Slow Light in a Simple Metasurface Structure Constructed by Cut and Continuous Metal Strips. Applied Physics B, 100, 699-703.
https://doi.org/10.1007/s00340-010-4184-6
[9]  Meng, F.Y., Fu, J.H., Zhang, K., et al. (2011) Metasurface Analogue of Electromagnetically Induced Transparency in Two Orthogonal Directions. Journal of Physics D: Applied Physics, 44, Article ID: 265402.
https://doi.org/10.1088/0022-3727/44/26/265402
[10]  Fleischhauer, M., Imamoglu, A. and Marangos, J.P. (2005) Electromagnetically Induced Transparency: Optics in Coherent Media. Reviews of Modern Physics, 77, 633.
https://doi.org/10.1103/RevModPhys.77.633
[11]  Thuy, V.T.T., Tung, N.T., Park, J.W., et al. (2010) Highly Dispersive Transparency in Coupled Metasurfaces. Journal of Optics, 12, Article ID: 115102.
https://doi.org/10.1088/2040-8978/12/11/115102
[12]  Tidström, J., Neff, C.W. and Andersson, L.M. (2010) Photonic Crystal Cavity Embedded in Electromagnetically Induced Transparency Media. Journal of Optics, 12, Article ID: 035105.
https://doi.org/10.1088/2040-8978/12/3/035105
[13]  Garrido Alzar, C.L., Martinez, M.A.G. and Nussenzveig, P. (2002) Classical Analog of Electromagnetically Induced Transparency. American Journal of Physics, 70, 37-41.
https://doi.org/10.1119/1.1412644
[14]  Lvovsky, A.I., Sanders, B.C. and Tittel, W. (2009) Optical Quantum Memory. Nature Photonics, 3, 706-714.
https://doi.org/10.1038/nphoton.2009.231
[15]  Phillips, D.F., Fleischhauer, A., Mair, A., et al. (2001) Storage of Light in Atomic Vapor. Physical Review Letters, 86, 783.
https://doi.org/10.1103/PhysRevLett.86.783
[16]  Devi, K.M., Sarkar, R., Sarma, A.K., et al. (2019) Exploring Polarization Independent Plasmon Induced Transparency in a Planar Terahertz Metamaterial. 2019 IEEE Workshop on Recent Advances in Photonics (WRAP), Guwahati, 13-14 December 2019, 1-3.
https://doi.org/10.1109/WRAP47485.2019.9013727
[17]  Cai, W., Xiao, B., Yu, J., et al. (2020) A Compact Graphene Metasurface Based on Electromagnetically Induced Transparency Effect. Optics Communications, 475, Article ID: 126266.
[18]  Zhong, M. (2020) Design and Verification of a Multiple Bands Terahertz Plasmonic Metasurface Based on Electromagnetically Induced Transparency Effect. Optical Materials, 106, Article ID: 110019.
https://doi.org/10.1016/j.optmat.2020.110019
[19]  Dolling, G., Enkrich, C., Wegener, M., et al. (2006) Simultaneous Negative Phase and Group Velocity of Light in a Metasurface. Science, 312, 892-894.
https://doi.org/10.1126/science.1126021
[20]  Hoffman, A.J., Alekseyev, L., Howard, S.S., et al. (2007) Negative Refraction in Semiconductor Metamaterials. Nature Materials, 6, 946-950.
https://doi.org/10.1038/nmat2033
[21]  Tong, S., Ren, C. and Tang, W. (2019) High-Transmission Negative Refraction in the Gradient Space-Coiling Metamaterials. Applied Physics Letters, 114, Article ID: 204101.
https://doi.org/10.1063/1.5100550
[22]  Wong, Z.J., Wang, Y., O’Brien, K., et al. (2017) Optical and Acoustic Metamaterials: Superlens, Negative Refractive Index and Invisibility Cloak. Journal of Optics, 19, Article ID: 084007.
https://doi.org/10.1088/2040-8986/aa7a1f
[23]  Ergin, T., Stenger, N., Brenner, P., et al. (2010) Three-Dimensional Invisibility Cloak at Optical Wavelengths. Science, 328, 337-339.
https://doi.org/10.1126/science.1186351
[24]  Liu, Y. and Zhang, X. (2011) Metamaterials: A New Frontier of Science and Technology. Chemical Society Reviews, 40, 2494-2507.
https://doi.org/10.1039/c0cs00184h
[25]  Yang, Y., Gao, Z., Xue, H., et al. (2019) Realization of a Three-Dimensional Photonic Topological Insulator. Nature, 565, 622-626.
https://doi.org/10.1038/s41586-018-0829-0
[26]  Yan, C.H., Li, Y., Yuan, H., et al. (2018) Targeted Photonic Routers with Chiral Photon-Atom Interactions. Physical Review A, 97, Article ID: 023821.
https://doi.org/10.1103/PhysRevA.97.023821
[27]  Chen, Y., Dong, L., Xu, X., et al. (2017) Electromagnetic Diode Based on Photonic Crystal Cavity with Embedded Highly Dispersive Meta-Interface. Journal of Applied Physics, 122, Article ID: 244507.
https://doi.org/10.1063/1.5010023
[28]  Chen, Y., Li, Y., Zhu, K., et al. (2018) Nonlinear Properties of Light-Tunneling Heterostructures Embedded with a Highly Dispersive Meta-Molecule. Optical Materials Express, 8, 3583-3592.
https://doi.org/10.1364/OME.8.003583
[29]  Liu, N., Weiss, T., Mesch, M., et al. (2010) Planar Metamaterial Analogue of Electromagnetically Induced Transparency for Plasmonic Sensing. Nano Letters, 10, 1103-1107.
https://doi.org/10.1021/nl902621d
[30]  Ishikura, N., Hosoi, R., Hayakawa, R., et al. (2012) Photonic Crystal Tunable Slow Light Device Integrated with Multi-Heaters. Applied Physics Letters, 100, Article ID: 221110.
https://doi.org/10.1063/1.4724191
[31]  Yao, T., Zhu, K., Chen, Y., et al. (2019) Meta-Interface Enhanced Light Tunneling Effect and Related Electromagnetic Diode Action. Journal of Applied Physics, 126, Article ID: 165303.
https://doi.org/10.1063/1.5121190
[32]  He, X.J., Wang, L., Wang, J.M., et al. (2013) Electromagnetically Induced Transparency in Planar Complementary Metamaterial for Refractive Index Sensing Applications. Journal of Physics D: Applied Physics, 46, Article ID: 365302.
https://doi.org/10.1088/0022-3727/46/36/365302

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133