The knowledge of the nutritional requirements and
their relation to the physiology of marine algae growth is key to incorporate
new species into aquaculture, whose dynamics tend to be largely unknown. The
use of Alsidium triquetrum in the pharmacological industry depends on
its availability in the natural environment,
occasionally scarce. As macroalgae cultivation gains momentum worldwide,
it is important to know how the effects of nutrients are modulated in the
thallus during cultivation. The linking of the relative growth rates (RGR) of A.
triquetrum and their relation with the macronutrients N (nitrogen), P
(phosphorus) and K (potassium) at the tissue level under culture conditions
constitutes the main contribution of this article. P levels tend to decrease as
the plant completes its development. Both the concentration of N and P are
higher in the stipe for the month of July, N (25.31 ± 0.26) vs P (0.846 ± 0.02)
period when the highest vegetative development is reached. The N and P modulate
the patterns of the species’ development over the annual cycle, unlike K, which is not considered a limiting factor. When
the temperature and lighting are not
favorable for growth, the plant simply accumulates these compounds. As
environmental conditions change, these stored compounds are actively used in their growth. The specimens with an initial
weight of 50 g present the best accumulated biomass (RGR) throughout the annual
cycle.
References
[1]
Harrison, P.J. and Hurd, C.L. (2001) Nutrient Physiology of Seaweeds: Application of Concepts to Aquaculture. Cahiers de Biologie Marine, 42, 71-82.
[2]
Morris, S.J. and Blackwood, C.B. (2007) The Ecology of Soil Organisms. In: Eldor, A.P., Ed., Soil Microbiology, Ecology and Biochemistry, 3rd Edition, Academic Press, Cambridge, 195-229. https://doi.org/10.1016/B978-0-08-047514-1.50012-3
[3]
Roleda, M.J. and Hurd, C.L. (2019) Seaweed Nutrient Physiology: Application of Concepts to Aquaculture and Bioremediation. Phycologia, 58, 552-562.
https://doi.org/10.1080/00318884.2019.1622920
[4]
Schaffelke, B. (1999) Particulate Organic Matter as a Novel Nutrient Source for Tropical Macroalgae. Journal of Phycology, 35, 1150-1157.
[5]
Taylor, R.B. and Rees, T.A.V. (1998) Excretory Products of Mobile Epifauna as a Nitrogen Source for Seaweeds. Limnology and Oceanography, 43, 600-606.
https://doi.org/10.4319/lo.1998.43.4.0600
[6]
Hepburn, C.D., Frew, R.D. and Hurd, C.L. (2012) Uptake and Transport of Nitrogen Derived from Sessile Epifauna in the Giant Kelp Macrocystis pyrifera. Aquatic Biology, 14, 121-128. https://doi.org/10.3354/ab00382
[7]
Boyd, P.W. and Hurd, C.L. (2009) Ocean Nutrients. In: Le Quéré, C. and Saltzman, E.S., Eds., Surface Ocean: Lower Atmosphere Processes, American Geophysical Union, Washington DC, 36-97. https://doi.org/10.1029/2008GM000844
[8]
Neushul, M., Benson, J., Harger, B.W.W. and Charters, A.C. (1992) Macroalgal Farming in the Sea: Water Motion and Nitrate Uptake. Journal of Applied Phycology, 4, 255-265. https://doi.org/10.1007/BF02161211
[9]
Perini, V. and Bracken, M.E.S. (2014) Nitrogen Availability Limits Phosphorus Uptake in an Intertidal Macroalga. Oecologia, 175, 667-676.
https://doi.org/10.1007/s00442-014-2914-x
[10]
Buck, B.H., Nevejan, N., Wille, M., Chambers, M.D. and Chopin, T. (2017) Offshore and Multi-Use Aquaculture with Extractive Species: Seaweeds and Bivalves. In: Buck, B. and Langan, R., Eds., Aquaculture Perspective of Multi-Use Sites in the Open Ocean, Springer, Cham, 23-69. https://doi.org/10.1007/978-3-319-51159-7_2
[11]
Stévant, P., Rebours, C. and Chapman, A. (2017) Seaweed Aquaculture in Norway: Recent Industrial Developments and Future Perspective. Aquaculture International, 25, 1373-1390. https://doi.org/10.1007/s10499-017-0120-7
[12]
Bezerra, A.F. and Marinho-Soriano, E. (2010) Cultivation of the Red Seaweed Gracilaria birdiae (Gracilariales, Rhodophyta) in Tropical Waters of Northeast Brazil. Biomass and Bioenergy, 34, 1813-1817.
https://doi.org/10.1016/j.biombioe.2010.07.016
[13]
Areces, A.J. (1989) Fisionomía del agar y su industria. Ed. Academia, La Habana.
[14]
Ainouz, L., Sampaio, A.H., Freitas, A.L.P., Benevides, N.M.B. and Mapurunga, S. (1995) Comparative Study on Hemagglutinins from the Red Algae Bryothamnion seaforthii and Bryothamnion triquetrum. Revista Brasileira de Fisiologia Vegetal, 7, 15-19.
[15]
Calvete, J.J., Costa, F.H.F. and Saker-Sampaio, S. (2000) The Amino Acid Sequence of the Agglutinin Isolated from the Red Marine Alga Bryothamnion triquetrum Defines a Novel Lectin Structure. Cellular and Molecular Life Sciences, 57, 343-350.
https://doi.org/10.1007/PL00000696
[16]
Viana, G.S., Freitas, A.L., Lima, M.M., Vieira, L.A., Andrade, M.C. and Benevides, N.M. (2002) Ant Nociceptive Activity of Sulfated Carbohydrates from the Red Algae Bryothamnion seaforthii (Turner) Kutz. and B. triquetrum (S.G. Gmel.) M. Howe. Brazilian Journal of Medical and Biological Research, 35, 713-722.
https://doi.org/10.1590/S0100-879X2002000600012
[17]
Pinto, V.P., Debray, H., Dus, D., Teixeira, E.H., de Oliveira, T.M., Carneiro, V.A., Teixeira., Filho, G.C., Nagano, C.S., Nascimento, K.S., Sampaio, A.H. and Cavada, B.S. (2009) Lectins from the Red Marine Algal Species Bryothamnion seaforthii and Bryothamnion triquetrum as Tools to Differentiate Human Colon Carcinoma Cells. Advances in Pharmacological and Pharmaceutical Sciences, 2009, Article ID: 862162.
https://doi.org/10.1155/2009/862162
[18]
do Nascimento-Neto, L.G., Carneiro, R.F., da Silva, S.R., da Silva, B.R., Vassiliepe, S. A.F., Carneiro, V.A, do Nascimento, K.S., Saker-Sampaio, S., da Silva Jr., V.A., Porto, A.L., Cavada, B.S., Sampaio, A.H., Teixeira, E.H. and Nagano, C.S. (2012) Characterization of Isoforms of the Lectin Isolated from the Red Algae Bryothamnion seaforthii and Its Pro-Healing Effect. Marine Drugs, 10, 1936-1954.
https://doi.org/10.3390/md10091936
[19]
Areces, A.J. and Soberats, L.R. (1992) Optimización del cultivo in situ de Bryothamnion triquetrum (Gmelin) Howe mediante evaluación de diversos sistemas de sujeción. Ciencias Biológicas, 18, 65-76. https://doi.org/10.7773/cm.v18i2.892
[20]
Areces, A.J. and Araujo, M. (1996) Influencia de la salinidad y la temperatura sobre el crecimiento de Bryothamnion triquetrum (Gmelin) Howe (Rhodophyta: Rhodomelaceae) Revista Biologia Tropical Costa Rica, 44, 449-454.
[21]
Areces, A.J., Cabrera, R. and Díaz-Larrea, J. (2020) Biotecnología de agarófitas del género Alsidium C. Agardh. Editorial Académica Espanola, 1-127.
[22]
Jackson, M.I. (1970) Determinaciones del fósforo en los suelos. In: Análisis químico de los suelos, Ed. Revolucionaria, La Habana, 213-216.
[23]
AOAC (Association of Official Agricultural Chemists) (1984) Official Methods of Analysis. Kjeldahl Method (2.062). 14th Edition, Washington DC.
[24]
COI/UNESCO (1983) Chemical Methods for Use in Marine Environmental Monitoring. Manual and Guides 12, 53 p.
[25]
Sokal, R.R. and Rohlf, F.J. (1981) Biometry. 2nd Edition, W.H. Freeman, New York.
Reef, R., Pandolfi, J.M. and Lovelock, C.E. (2012) The Effect of Nutrient Enrichment on the Growth, Nucleic Acid Concentrations, and Elemental Stoichiometry of Coral Reef Macroalgae. Ecology and Evolution, 2, 1985-1995.
https://doi.org/10.1002/ece3.330
[28]
Hein, M., Folager-Pedersen, M. and Sand-Jensen, K. (1995) Size-Dependent Nitrogen Uptake in Micro- and Macroalgae. Marine Ecology Progress Series, 118, 247-253.
https://doi.org/10.3354/meps118247
[29]
Phillips, J.C. and Hurd, C.L. (2003) Nitrogen Ecophysiology of Intertidal Seaweeds from New Zealand: N Uptake, Storage and Utilization in Relation to Shore Position and Season. Marine Ecology Progress Series, 264, 31-48.
https://doi.org/10.3354/meps264031
[30]
Young, E.B., Dring, M.J., Savidge, G., Birkett, D.A. and Berge, J.A. (2007) Seasonal Variations in Nitrate Reductase Activity and Internal N Pools in Intertidal Brown Algae Are Correlated with Ambient Nitrate Concentrations. Plant Cell and Environment, 30, 764-774. https://doi.org/10.1111/j.1365-3040.2007.01666.x
[31]
Fernández, P.A., Gaitán-Espitia, J.D., Leal, P.P., Schmid, M., Revill, A.T. and Hurd, C.L. (2020) Nitrogen Sufficiency Enhances Thermal Tolerance in Habitat-Forming Kelp: Implications for Acclimation under Thermal Stress. Scientific Reports, 10, Article No. 3186. https://doi.org/10.1038/s41598-020-60104-4
[32]
Lapointe B.E., Littler, M.M. and Littler, D.S. (1992) Nutrient Availability to Marine Macroalgae in Siliciclastic versus Carbonate-Rich Coastal Waters. Estuaries and Coasts, 15, 75-82. https://doi.org/10.2307/1352712
[33]
Lobban, C. S., Harrison, P.J. and Ducan, M. J. (1985) Nutrients. In: The Physiological Ecology of Seaweeds, Cambridge Universiy Press, Cambridge, 75-110.
[34]
Sondergaard, M., Jensen, J.P. and Jeppesen, E. (2003) Role of Sediment and Internal Loading of Phosphorus in Shallow Lakes. Hydrobiologia, 506-509, 135-145.
https://doi.org/10.1023/B:HYDR.0000008611.12704.dd
[35]
Lapointe, B.E. and Tenore, K.R. (1981) Experimental Outdoor Studies with Ulva fasciata Delile. I. Interaction of Light and Nitrogen on Nutrient Uptake, Growth, and Biochemical Composition. Journal of Experimental Marine Biology and Ecology, 53, 135-152. https://doi.org/10.1016/0022-0981(81)90015-0
[36]
Duke, C.S., Litaker, W. and Ramus, J. (1989) Effects of Temperatura Nitrogen Supply, and Tissue Nitrogen on Ammonium Uptake Rates of the Chorophyte Seaweeds Ulva curvata and Codium divaricatum. Journal of Phycology, 25, 113-123.
https://doi.org/10.1111/j.0022-3646.1989.00113.x
[37]
Pineiro-Corbeira, C., Barreiro, R, Cremades, J. and Arenas, F. (2018) Seaweed Assemblages under a Climate Change Scenario: Functional Responses to Temperature of Eight Intertidal Seaweeds Match Recent Abundance Shifts. Scientific Reports, 8, Article No. 12978. https://doi.org/10.1038/s41598-018-31357-x
[38]
Raven, J.A. and Hurd, C.J. (2012) Ecophysiology of Photosynthesis in Macroalgae. Photosynthesis Research, 113, 105-125. https://doi.org/10.1007/s11120-012-9768-z
[39]
Hurd, C.L. (2017) Shaken and Stirred: The Fundamental Role of Water Motion in Resource Acquisition and Seaweed Productivity. Perspective in Phycology, 4, 73-81.
https://doi.org/10.1127/pip/2017/0072
[40]
Boderskov, T., Schmedes, P.S., Bruhn, A., Rasmussen, M.B., Nielsen, M.M. and Pedersen, M.F. (2016) The Effect of Light and Nutrient Availability on Growth, Nitrogen, and Pigment Contents of Saccharina latissima (Phaeophyceae) Grown in Outdoor Tanks, under Natural Variation of Sunlight and Temperature, during Autumn and Early Winter in Denmark. Journal of Applied Phycology, 28, 1153-1165.
https://doi.org/10.1007/s10811-015-0673-7
[41]
Bird, K.T. (1987) Seasonal Variation in Protein: Carbohydrate Ratios in a Subtropical Estuarine Alga, Gracilaria verrucosa, and the Determination of Nitrogen Limitation Status Using These Ratios. Botanica Marina, 27, 111-115.
https://doi.org/10.1515/botm.1984.27.3.111
[42]
Andria, J.R., Vergara, J.J. and Pérez-Llorens, J.L. (1999) Biochemical Responses and Photosynthetic Performance of Gracilaria sp. (Rhodophyta) from Cádiz, Spain, Cultured under Different Inorganic Carbon and Nitrogen Levels. European Journal of Phycology, 34, 497-504. https://doi.org/10.1080/09541449910001718851
[43]
Neish, A.C. and Shacklock, P.F. (1971) Greenhouse Experiments on the Propagation of Strain T4 of Irish Moss. Atlantic. Reg. Tech. Report. Serial No. 14, 25 p.
[44]
Debore, J.A. (1979) Effects of Nitrogen Enrichment on Growth Rates and Phycocolloid Content in Gracilaria foliifefera and Neoagardhiella bailey (Florideophyceae). Proceedings of the International Symposium, 9, 263-273.