Nowadays our energy needs have grown exponentially corresponding with
human population growth and technological advancement. Energy consumption
linked to non-renewable resources contributes to greenhouse gas emissions and
enhances resource depletion. Most of the researchers were proven that the
worldwide concern about CO2 emissions and the reduction in the use of coal fuels have increased the interest in using biomass fuel for
electricity production, because there is no net increase in CO2 emissions from biomass (agricultural residues such as straw, bagasse, coffee
husk, and rice husks) combustion. Furthermore, coffee husk which has high
energy potential was not taken into account for the generation of energy. However,
this paper investigates the energy generation in coffee husk, and suggests coffee
husk is an energy source. The datum was collected from the south western region
of Ethiopia (Tepi town), and its equipment
was selected. Coffee husk was tested experimentally in Addis Ababa University
with Eager 300 software for running the equipment, storing the data and
analyzing. The results obtained that calorific values were 18.98 MJ/kg. Overall the
result demonstrates that the proposed coffee husk has high energy potential for
the generation of energy.
References
[1]
Adams, M. R., & Dougan, J. (1987). Waste Products. In R. J. Clarke, & R. Macrae (Eds.), Coffee (pp. 257-291). London, New York, NY: Elsevier Applied Science Publishers Ltd.
[2]
Aljundi, I. H. (2009). Energy and Exergy Analysis of a Steam Power Plant in Jordan. Applied Thermal Engineering, 29, 324-328.
https://doi.org/10.1016/j.applthermaleng.2008.02.029
[3]
Bapat, D. W., Kulkarni, S. V., & Bhandarkar, V. P. (1997). Design and Operating Experience on Fluidized Bed Boiler Burning Biomass Fuels with High Alkali Ash. Proceedings of the 14th International Conference on Fluidized Bed Combustion, Vancouver, 11-14 May 1997, 80-83.
[4]
Bbergman, T. L., Lavine, A. S., Incropera, F. P., & Dewitt, D. P. (2011). Fundamentals of Heat and Mass Transfer (7th ed., pp. 40-45). Hoboken, NJ: John Wiley & Sons.
[5]
Chattopadhyay, P. (2006). Boiler Operation Engineering. New Delhi: Tata McGraw-Hill.
[6]
Coskun, C., Oktay, Z., & Ilten, N. (2009). A New Approach for Simplifying the Calculation of Flue Gas Specific Heat and Specific Exergy Value Depending on Fuel Composition. Energy, 34, 1898-1902. https://doi.org/10.1016/j.energy.2009.07.040
[7]
CTA (Coffee and Tea Development Authority) (1999). Ethiopia Cradle of the Wonderbean Coffee Arabica (Abissinica). Addis Ababa: Coffee and Tea Development Authority.
[8]
Duffie, J. A., & Beckman, W. A. (1991). Solar Engineering of Thermal Processes (2nd ed.). New York, NY: John Wiley and Sons.
[9]
Dutta, B. K. (2010). Principles of Mass Transfer and Separation Processes. New Delhi: PHI Learning Pvt. Ltd.
[10]
Eastop, T. D., & McConkey, A. (1993). Applied Thermodynamics and Engineering (5th ed.). London: Pearson Education Ltd.
[11]
Fan, L., Soccol, A. T., Pandey, A., & Soccol, C. R. (2003). Cultivation of Pleurotus Mushrooms on Brazilian Coffee Husk and Effects of Caffeine and Tannic Acid. Micologia Aplicada International, 15, 15-21.
[12]
Fiori, L., & Florio, L. (2010). Gasification and Combustion of Grape Marc: Comparison among Different Scenarios. Waste Biomass Valorization, 1, 191-200.
https://doi.org/10.1007/s12649-010-9025-7
[13]
Franca, A. S., & Oliveira, L. S. (2009). Coffee Processing Solid Wastes: Current Uses and Future Perspectives. In G. S. Ashworth, & P. Azevedo (Eds.), Agricultural Wastes (pp. 90-96). New York, NY: Nova Publishers.
[14]
Frank, R. C., Peter de, G., Sarah, L. H., & Jeremy, W. (2007). The Biomass Assessment Handbook. Padstow: T. J. International.
[15]
Geankoplis, C. J. (1993). Transport Processes and Unit Operations (3rd ed.). Upper Saddle River, NJ: Prentice Hall.
[16]
Gemechu, B. (2009). Efforts at Promoting, Branding Ethiopia’s Coffee. The Ethiopian Herald, 19 May 2009.
[17]
Ginzburg, A. S., & Savina, I. M. (1982). Mass Transfer Characteristics of Food Products. Moscow: LiPP. (In Russian)
[18]
Glikin, P. G. (1978). Transport of Solids through Flighted Rotation Drums. Transactions of the Institution of Chemical Engineers, 56, 120-126.
[19]
Hall, D. O., Rosillo-Calle, F., & Woods, J. (1991). Biomass and Its Importance in Balancing CO2 Budgets. In G. Grassi, A. Collina, & H. Zibetta (Eds.), Biomass for Energy, Industry and Environment (pp. 89-96). London: Elsevier Science.
[20]
Harry, M. F. (1998). Standard Handbook of Hazardous Waste Treatment and Disposal. New York, NY: McGraw Hall.
[21]
Hewitt, G. F., & Barbosa, J. (2008). APV Dryer Handbook. Crawley: Invensys APV Technical Centre.
[22]
Kenya Planters Cooperation Union (KPCU) (1996). Company Information Booklet. Nairobi: Factory Data.
Kreith, F. (2000). The CRC Handbook of Thermal Engineering. Boca Raton, FL: CRC Press. https://doi.org/10.1201/9781420050424
[25]
Kreith, F., Manglik, R.M., & Bohn, M.S. (2003). Principle of Heat Transfer (7th ed.). New York, NY: Nelson Education.
[26]
Kumar, S., Baah, F., Pozo, E. A., Kufa, T., Zeleke, A., & Okwadi, J. (2002). Research and Development Options for Enhancing Income and Sustainability of Farming Systems in Kafa-Sheka Zone of Ethiopia. 17th Symposium of International Centre for Development Oriented Research in Agriculture, Florida, 17-20 November 2002, 45-50.
[27]
Kyle, B. G. (1984). Chemical and Process Thermodynamics. Englewood Cliffs, NJ: Prentice Hall.
[28]
Menendez, J. A., Dominguez, A., Fernandez, Y., & Pis, J. J. (2007). Evidence of Self-Gasification during the Microwave-Induced Pyrolysis of Coffee Hulls. Energy Fuels, 21, 373-378. https://doi.org/10.1021/ef060331i
[29]
Murthy, P. S., & Naidu, M. (2012). Sustainable Management of Coffee Industry Byproducts and Value Addition: A Review. Resources, Conservation & Recycling, 66, 45-58. https://doi.org/10.1016/j.resconrec.2012.06.005
[30]
Musebe, R., Agwenanda, C., & Mitiku, M. (2007). Primary Coffee Processing in Ethiopia: Patterns, Constraints and Determinants. African Crop Science Conference Proceedings, 8, 1417-1421.
[31]
Nag, P. K. (2008). Power Plant Engineering (3rd ed.). New York, NY: Tata McGraw-Hill Publishing Company Limited.
[32]
Nussbaumer, T., & Hustad, J. E. (1997). Overview of Biomass Combustion. In A. V. Bridgwater, & D. G. B. Boocock (Eds.), Developments in Thermochemical Biomass Conversion (pp. 1229-1246). London: Chapman and Hall.
[33]
Ogada, T. (1995). Combustion and Emission Characteristics of Wet Sewage Sludge in a Bubbling Fluidised Bed Combustor. PhD Thesis, Hamburg: Technical University Hamburg.
[34]
Pandey, A., Soccol, C. R., Nigan, P., Brand, D., Mohan, F., & Rovossos, S. (2000). Biotechnological Potential of Coffee Pulp and Husk for Bio-Process. Biochemical Engineering Journal, 6, 153-162. https://doi.org/10.1016/S1369-703X(00)00084-X
[35]
Raja, A. K., Srivastava, A. P., & Dwivedi, M. (2006). Power Plant Engineering. New Delhi: New Age International.
[36]
Rajput, R. K. (2008). Thermal Engineering. New Delhi: Laxmi.
Rigassa, N., Sundaraa, R. D., & Seboka, B. B. (2011). Challenges and Opportunities in Municipal Solid Waste Management: The Case of Addis Ababa City, Central Ethiopia. Journal of Human Ecology, 33, 179-190.
https://doi.org/10.1080/09709274.2011.11906358
[39]
Saidur, R., Ahamed, J. U., & Masjuki, H. H. (2010). Energy, Exergy and Economic Analysis of Industrial Boilers. Energy Policy, 38, 2188-2197.
https://doi.org/10.1016/j.enpol.2009.11.087
[40]
Strehler, A., & Stuetzle, W. (1987). Biomass Residues. In D. O. Hall (Ed.), Biomass (pp. 75-97). New York, NY: Wiley.
[41]
Treybal, R. E. (1981). Mass Transfer Operations (International ed.). Singapore: McGraw-Hill Book Company.
[42]
UNDP (United Nations Development Programme)/World Bank Energy Sector Management Assistance Programme (ESMAP) (1986). Agricultural Residue Briquetting Pilot Projects for Substitute Household and Industrial Fuels. Vol. 1, Technical Report, Maynard, MA: Digital Equipment Corporation.
[43]
Wakui, T., & Yokoyama, R. (2011). Optimal Sizing of Residential Gas Engine Cogeneration System for Power Interchange Operation from Energy Saving Viewpoint. Energy, 36, 3816-3824. https://doi.org/10.1016/j.energy.2010.09.025
[44]
Walas, S. M. (1990). Chemical Process Equipment: Selection and Design. Oxford: Butterworth Heinemann.
[45]
Werthera, J., Saengera, M., Hartgea, E., Ogadab, T., & Siagib, Z. (2000). Combustion of Agricultural Residues. Progress in Energy and Combustion Science, 26, 1-27.
https://doi.org/10.1016/S0360-1285(99)00005-2
[46]
Werthera, J., Saengera, M., Hartgea, E., Ogadab, T., & Siagib, Z. (2001). Combustion of Coffee Husks. Renewable Energy, 23, 103-121.
https://doi.org/10.1016/S0960-1481(00)00106-3
[47]
Wiersum, K. F., Gole, T. W., Gatzweiler, F., Volkmann, J., Bognetteau, E., & Wirtu, O. (2008). Certification of Wild Coffee in Ethiopia: Experiences and Challenges. Forest, Trees Livelihoods, 18, 9-21. https://doi.org/10.1080/14728028.2008.9752614
[48]
Wilen, C., Stahlberg, P., Sipila, K., & Ahokas, J. (1987). Pelletization and Combustion of Straw. In D. L. Klass (Ed.), Energy from Biomass and Wastes (pp. 469-483). London, New York, NY: Elsevier Applied Science Publishers Ltd.
[49]
Wilson, L., John, G. R., Mhilu, C. F., Yang, W., & Blasiak, W. (2010). Coffee Husks Gasification Using High Temperature Air/Steam Agent. Fuel Processing Technology, 91, 1330-1337. https://doi.org/10.1016/j.fuproc.2010.05.003
[50]
World Bank (1986). Agro-Industry Proffles: FAU-14 Coffee. Sectoral Library International Bank for Reconstruction and Development. Washington DC: World Bank.