全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

Modelo Acústico y de Lenguaje del Idioma Espa?ol para el dialecto Cucute?o, Orientado al Reconocimiento Automático del Habla

DOI: https://doi.org/10.14483/23448393.11616

Keywords: speech recognition, acoustic models, language models, CMU Sphinx, Raspberry Pi. reconocimiento del habla, modelos acústicos, modelos de lenguajes, CMU Sphinx, Raspberry Pi.

Full-Text   Cite this paper   Add to My Lib

Abstract:

Abstract (es_ES) Contexto: El reconocimiento automático del habla requiere el desarrollo de modelos de lenguaje y modelos acústicos para los diferentes dialectos que existen. El objeto de esta investigación es el entrenamiento de un modelo acústico, un modelo de lenguaje estadístico y un modelo de lenguaje gramatical para el idioma espa?ol, específicamente para el dialecto de la ciudad de San José de Cúcuta, Colombia, que pueda ser utilizado en un sistema de control por comandos. Lo anterior motivado en las deficiencias que presentan los modelos existentes para el idioma espa?ol, para el reconocimiento de la frecuencia fundamental y contenido espectral, el acento, la pronunciación, el tono o simplemente al modelo de lenguaje de la variante dialéctica de esta región. Método: Este proyecto utiliza el sistema embebido Raspberry Pi B+ con el sistema operativo Raspbian que es una distribución de Linux, y los softwares de código abierto CMU-Cambridge Statistical Language Modeling toolkit de la Universidad de Cambridge y CMU Sphinx de la Universidad Carnegie Mellon; los cuales se basan en los modelos ocultos de Markov para el cálculo de los parámetros de voz. Además, se utilizaron 1913 audios grabados por locutores de la ciudad de San José de Cúcuta y el departamento de Norte de Santander para el entrenamiento y las pruebas del sistema de reconocimiento automático del habla. Resultados: Se obtuvo un modelo de lenguaje que consiste de dos archivos, uno de modelo de lenguaje estadístico (. lm), y uno de modelo gramatical (. jsgf). Con relación a la parte acústica se entrenaron dos modelos, uno de ellos con una versión mejorada que obtuvo una tasa de acierto en el reconocimiento de comandos del 100% en los datos de entrenamiento y de 83% en las pruebas de audio. Por último, se elaboró un manual para la creación de los modelos acústicos y de lenguaje con el software CMU Sphinx. Conclusiones: El número de participantes en el proceso de entrenamiento de los modelos acústicos y de lenguaje influye significativamente en la calidad del procesamiento de voz del reconocedor. Para obtener una mejor respuesta del sistema de Reconocimiento Automático del Habla es importante usar un diccionario largo para la etapa de entrenamiento y un diccionario corto con las palabras de comando para la implementación del sistema. Teniendo en cuenta que en las pruebas de reconocimiento se obtuvo una tasa de éxito mayor al 80% es posible usar los modelos creados en el desarrollo de un sistema de Reconocimiento Automático del Habla para una aplicación orientada a la asistencia de personas

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133