|
- 2018
THE APPLICATIONS IN ENGINEERING OF EQUATIONS WITH NON-STANDARD GROWTH CONDITIONALKeywords: p(x)–Laplacian,Standart Olmayan Büyüme Ko?ulu,Varyasyonel ?ntegral,Lebesgue,Sobolev Abstract: Many materials and problems in physics and engineering applications can be mathematically modeled with sufficient accuracy using classical Lebesgue and classical Sobolev spaces. However, must be variable in order to be expressed correctly the underlying energy of some nonhomogeneous materials. Such problems can be solved only in the variable-exponent Lebesgue and Sobolev spaces. Therefore, in recent years, the interest to partial differential equations with non-standard growth conditional involving -Laplacian (with growth conditional) and variational integrals have been increased. Electrorheological Fluids Theory, Nonlinear Elasticity Theory, Image Processing, Flow in Porous Media are some of the application areas in engineering of non-standard growth conditional differential equations involving -Laplacian. Especially Electrorheological fluids have been used in robotics and space technology (The Research is mostly done in America and especially in NASA laboratories) have significiant importance. In this presentation, we provide information on variational integrals and on nonstandard growth-conditional partial differential equations involving -Laplacian, which has an important role in applied sciences (especially in engineering)
|