全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Application of Grid Search Parameter Optimized Bayesian Logistic Regression Algorithm to Detect Cyberbullying in Turkish Microblog Data

Keywords: Sanal Zorbal?k,Lojistik Bayes Regresyonu,Tük?e,Makine ??renmesi,Do?al Dil ??leme

Full-Text   Cite this paper   Add to My Lib

Abstract:

There is a huge interaction between users of various social media platforms. This communication produces enormous amount of user data worth to be analyzed from numerous aspects. One of the research area emerging from the user data is a major security issue known as cyberbullying. Since this problem has been recognized as the source of cybercrimes, design of a system to detect cyberbullying attacks/sources through the micro-blog texts is evident. Most of the academic search of this topic has been conducted in English language. The originality of this paper is that we develop an accurate cyberbullying detection system for Turkish language. We used data from Twitter to develop a supervised machine learning model on top of Bayesian Logistic Regression whose parameters are tuned with the use of grid-search algorithm. Since the text data produces a high dimensional training space for machine learning algorithms, we also used Chi-Squared (CH2) feature selection strategy to obtain best subset of features. The optimized version of the proposed algorithm on top of reduced feature dimension has produced an f-measure value of 0.925. Finally, we also compared the results of the proposed algorithm with the frequently used machine learning methods from literature and we provided the corresponding results in related sections

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133