全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Perbandingan Performansi Teknik Klasifikasi Breakdown Mesin pada Proses Produksi Pembuatan Battery Mobil

DOI: https://doi.org/10.23917/jiti.v18i1.7232

Keywords: classification technique, accuracy, sensitivity, specificity

Full-Text   Cite this paper   Add to My Lib

Abstract:

Data mining is useful in finding interesting patterns of hidden information in a database with specified algorithms. Management of uncertainty in the automotive industry supply chain, with case data at PT QQQ that produce car batteries, classification techniques are used to manage uncertainty in the case of engine breakdown. Based on the utilization of classification techniques, performance comparison analysis was carried out from several methods, namely Decision Tree, Bagging, Boosting and Random Forest. The research data is divided into testing data (75%) and training data (25%). This study uses Software R for analysis needs. The need for testing the goodness of the model uses package (caret) help to see the value of accuracy, sensitivity and specificity. The analysis shows that the Random Forest and Bagging method is superior compared to the Decision Tree and Boosting methods based on accuracy criteria, while the sensitivity criteria, Bagging and Boosting methods are superior to Random Forest and DecisionTree. The lowest sensitivity value is owned by the Decision Tree Method, which indicates that the ability of the method is weak in predicting very few classes

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133