全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

A 3D STOCHASTIC MODEL FOR GEOMETRICAL CHARACTERIZATION OF PARTICLES IN TWO-PHASE FLOW APPLICATIONS

Keywords: 3D modeling, finite point process, Matérn point process, stochastic geometry, particles size distribution, two-phase flow

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper a new approach to geometrically model and characterize 2D silhouette images of two-phase flows is proposed. The method consists of a 3D modeling of the particles population based on some morphological and interaction assumptions. It includes the following steps. First, the main analytical properties of the proposed model – which is an adaptation of the Matérn type II model – are assessed, namely the effect of the thinning procedures on the population’s fundamental properties. Then, orthogonal projections of the model realizations are made to obtain 2D modeled images. The inference technique we propose and implement to determine the model parameters is a two-step numerical procedure: after a first guess of the parameters is defined, an optimization procedure is achieved to find the local minimum closest to the constructed initial solution. The method was validated on synthetic images, which has highlighted the efficiency of the proposed calibration procedure. Finally, the model was used to analyze real, i.e., experimentally acquired, silhouette images of calibrated polymethyl methacrylate (PMMA) particles. The population properties are correctly evaluated, even when suspensions of concentrated monodispersed and bidispersed particles are considered, hence highlighting the method’s relevance to describe the typical configurations encountered in bubbly flows and emulsions

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133