全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

PARAMETRIC BLIND IMAGE DEBLURRING WITH GRADIENT BASED SPECTRAL KURTOSIS MAXIMIZATION

Keywords: blind image deblurring (BID), gradient descent, image quality measures (IQMs), image restoration, kurtosis

Full-Text   Cite this paper   Add to My Lib

Abstract:

Blind image deconvolution/deblurring (BID) is a challenging task due to lack of prior information about the blurring process and image. Noise and ringing artefacts resulted during the restoration process further deter fine restoration of the pristine image. These artefacts mainly arise from using a poorly estimated point spread function (PSF) combined with an ineffective restoration filter. This paper presents a BID scheme based on the steepest descent in kurtosis maximization. Assuming uniform blur, the PSF can be modelled by a parametric form. The scheme tries to estimate the blur parameters by maximizing kurtosis of the deblurred image. The scheme is devised to handle any type of blur that can be framed into a parametric form such as Gaussian, motion and out-of-focus. Gradients for the blur parameters are computed and optimized in the direction of increasing kurtosis value using a steepest descent scheme. The algorithms for several common blurs are derived and the effectiveness has been corroborated through a set of experiments. Validation has also been carried out on various real examples. It is shown that the scheme optimizes on the parameters in a close vicinity of the true parameters. Results of both benchmark and real images are presented. Both full-reference and non-reference image quality measures have been used in quantifying the deblurring performance. The results show that the proposed method offers marked improvements over the existing methods

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133