全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Nuclear and Electron Magnetic Resonance Spectroscopies of Atomically Precise Gold Nanoclusters

DOI: https://doi.org/10.1021/acs.accounts.8b00495

Full-Text   Cite this paper   Add to My Lib

Abstract:

Atomically precise gold nanoclusters display properties that are unseen in larger nanoparticles. When the number of gold atoms is sufficiently small, the clusters exhibit molecular properties. Their study requires extensive use of classic molecular physical chemistry and, thus, methods such as vibrational spectroscopies, electrochemistry, density functional theory and molecular dynamics calculations, and of course nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopies. NMR and EPR studies have been mostly carried out on the benchmark, stable molecules Au25(SR)18, Au38(SR)24, Au102(SR)44, and Au144(SR)60 (where SR = thiolate). In this Account, we showcase examples primarily taken from our previous and ongoing NMR and EPR studies, which we hope will trigger further interest in the use of these sensitive, though often underutilized, techniques. Indeed, 1D and 2D NMR spectra of pure, atomically precise clusters can be very detailed and informative. Molecular clusters are molecules and, thus, have discrete energy levels and undergo stepwise oxidation or reduction. The effect of the charge state on the chemical shifts and line shapes is a function of the ligand type (ligands differ due to specific bonds with different Au atom types) and the position of the chemical group along the ligand backbone: for groups near the Au core, they can be very dramatic. Ligand-protected gold clusters are hard–soft molecules where a hard metal core is surrounded by a dynamic molecular layer. The latter provides a nanoenvironment that interfaces the cluster core with the surrounding environment and can be permeated by molecules and ions. NMR spectroscopy is especially useful to assess its structure. For example, the data show that whereas long alkanethiolates form bundles, shorter chains exhibit more conformational freedom and are quite folded. NMR spectroscopy allows studying diastereotopic effects and provides information on possible hydrogen bonds of ligands with sulfur or surface gold atoms. EPR spectroscopy is a very precise technique to check and characterize the magnetic state of gold clusters or clusters doped with foreign-metal atoms. Electron nuclear double resonance (ENDOR) provides a powerful tool to assess the interaction of an unpaired electron with nuclei, as we showed for 197Au and 1H. It can be used as a sensitive probe of the spin-density distribution in nanoclusters: for example, it showed that the singly occupied molecular orbital may span outside the Au core by nearly 6 ?. Solid-state EPR spectroscopy has provided

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133