全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Analysis of CH4 Uptake over Metal–Organic Frameworks Using Data-Mining Tools

DOI: https://doi.org/10.1021/acscombsci.8b00150

Full-Text   Cite this paper   Add to My Lib

Abstract:

A database containing 2224 data points for CH4 storage or delivery in metal–organic frameworks (MOFs) was analyzed using machine-learning tools to extract knowledge for generalization. The database was first reviewed to observe the basic trends and patterns. It was then analyzed using decision trees and artificial neural networks (ANN) to extract hidden information and develop rules and heuristics for future studies. Five-fold cross validations were used in each analysis to test the validity of the models with data not seen before. Decision-tree analyses were carried out using six user-defined descriptors and two structural properties, separately. The crystal structure and the total degree of unsaturation were found to be the effective user-defined descriptors, whereas the pore volume and maximum pore diameter, as structural properties, were sufficient to determine the MOFs having high CH4-storage capacity. Moreover, a high pore volume is always required, as expected. In ANN analyses, models were also developed by using user-defined descriptors and structural properties separately. It was observed that the user-defined descriptors were not sufficient to describe the CH4-storage capacities of MOFs, whereas the structural properties in particular led to accurate CH4-storage predictions with an RMSE of 26.8 and an R2 of 0.92 for testing

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133