|
- 2019
Dissolution Kinetics of Epitaxial Cadmium Carbonate Overgrowths on DolomiteDOI: https://doi.org/10.1021/acsearthspacechem.8b00115 Abstract: Thin films grown on mineral surfaces can immobilize toxic metals in natural systems, but the effects of epitaxy and film thickness on dissolution rates of the overgrowth are typically unknown. To explore these effects, otavite (CdCO3) films were grown on dolomite (104) surfaces from aqueous solutions containing [Cd] = [Ca] = [CO3] = 0.2 mM for 1–48 h and then dissolved in deionized water. Films of various thicknesses and strain states were obtained by varying the growth reaction time. Growth for up to 3 h produced strained thin films with Cd coverages of <4.3 ± 0.6 equivalent monolayers (ML) (corresponding to a thickness of up to 17 ?), whereas reaction times of up to 48 h produced thicker films with as many as 114 ± 14 equivalent ML of Cd. Intrinsic dissolution rates were measured as a function of otavite film thickness by a combination of synchrotron X-ray fluorescence, specular X-ray reflectivity, and atomic force microscopy. The initial dissolution rates for unstrained films were comparable to those reported for synthetic otavite powders, whereas the thinnest films (<3.1 ± 1.1 ML) dissolved at a 50% slower rate, indicating that epitaxial strain effectively enhanced their stability. We discuss potential reasons for this difference
|