全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Biomaterial Platform To Establish a Hypoxic Metastatic Niche in Vivo

DOI: https://doi.org/10.1021/acsabm.8b00837

Full-Text   Cite this paper   Add to My Lib

Abstract:

Hypoxia is a hallmark of tumor microenvironments, exerting wide-ranging impacts on key processes of tumor progression and metastasis. However, our understanding of how hypoxia regulates these processes has been based primarily on studying the effects of hypoxia within the primary tumor. Recently, an increasing number of studies have suggested the importance of hypoxic regulation within metastatic target organs, but hypoxic metastatic niches in the body are difficult to access with current imaging techniques, hampering detailed in vivo investigation of hypoxia at metastatic sites. Here, we report an engineered biomaterial scaffold that is able to establish an in vivo hypoxic metastatic niche in a readily accessible area, enabling the investigation of hypoxic regulation at a metastatic site. We engineered hypoxic environments within microporous poly(lactide-co-glycolide) (PLG) scaffolds, which have previously been shown to act as premetastatic niche mimics, via the addition of CoCl2, a hypoxia-mimetic agent. When implanted into the subcutaneous region of mice, CoCl2-containing PLG (Co-PLG) scaffolds established hypoxic microenvironments, as evidenced by the stabilization of hypoxia-inducible factor 1α (HIF1α) and increased blood vessel formation in vitro and in vivo. Furthermore, implanted Co-PLG scaffolds were able to recruit 4T1 metastatic breast cancer cells. These results demonstrate that Co-PLG scaffolds can establish an in vivo hypoxic metastatic niche, providing a novel platform to investigate hypoxic regulation of disseminated tumor cells (DTCs) at target organs

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133