全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

Multilayer ReS2 Photodetectors with Gate Tunability for High Responsivity and High-Speed Applications

DOI: https://doi.org/10.1021/acsami.8b11248

Full-Text   Cite this paper   Add to My Lib

Abstract:

Rhenium disulfide (ReS2) is an attractive candidate for photodetection applications owing to its thickness-independent direct band gap. Despite various photodetection studies using two-dimensional semiconductors, the trade-off between responsivity and response time under varying measurement conditions has not been studied in detail. This report presents a comprehensive study of the architectural, laser power and gate bias dependence of responsivity and speed in supported and suspended ReS2 phototransistors. Photocurrent scans show uniform photogeneration across the entire channel because of enhanced optical absorption and a direct band gap in multilayer ReS2. A high responsivity of 4 A W–1 (at 50 ms response time) and a low response time of 20 μs (at 4 mA W–1 responsivity) make this one of the fastest reported transition-metal dichalcogenide photodetectors. Occupancy of intrinsic (bulk ReS2) and extrinsic (ReS2/SiO2 interface) traps is modulated using gate bias to demonstrate tunability of the response time (responsivity) over 4 orders (15×) of magnitude, highlighting the versatility of these photodetectors. Differences in the trap distributions of suspended and supported channel architectures, and their occupancy under different gate biases enable switching the dominant operating mechanism between either photogating or photoconduction. Further, a new metric that captures intrinsic photodetector performance by including the trade-off between its responsivity and speed, besides normalizing for the applied bias and geometry, is proposed and benchmarked for this work

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133