全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

Solar Water Oxidation by an InGaN Nanowire Photoanode with a Bandgap of 1.7 eV

DOI: https://doi.org/10.1021/acsenergylett.7b01138

Full-Text   Cite this paper   Add to My Lib

Abstract:

The performance of overall solar water splitting has been largely limited by the half-reaction of water oxidation. Here, we report a 1.7 eV bandgap InGaN nanowire photoanode for efficient solar water oxidation. It produces a low onset potential of 0.1 V versus a reversible hydrogen electrode (RHE) and a high photocurrent density of 5.2 mA/cm2 at a potential as low as 0.6 V versus RHE. The photoanode yields a half-cell solar energy conversion efficiency up to 3.6%, a record for a single-photon photoanode to our knowledge. Furthermore, in the presence of hole scavengers, the photocurrent density of the InGaN photoanode reaches 21.2 mA/cm2 at 1.23 V versus RHE, which approaches the theoretical limit for a 1.7 eV InGaN absorber. The InGaN nanowire photoanode may serve as an ideal top cell in a photoelectrochemical tandem device when stacked with a 0.9–1.2 eV bandgap bottom cell, which can potentially deliver solar-to-hydrogen efficiency over 25%

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133