|
- 2018
Highly Efficient Ruddlesden–Popper Halide Perovskite PA2MA4Pb5I16 Solar CellsDOI: https://doi.org/10.1021/acsenergylett.8b01153 Abstract: Two-dimensional (2D) Ruddlesden–Popper (RP) organic–inorganic perovskites have emerged as promising candidates for solar cells with technologically relevant stability. Herein, a new RP perovskite, the fifth member (?n? = 5) of the (CH3(CH2)2NH3)2(CH3NH3)n?1PbnI3n+1 family (abbreviated as PA2MA4Pb5I16), was synthesized and systematically investigated in terms of photovoltaic application. The obtained pure PA2MA4Pb5I16 crystal exhibits a direct band gap of Eg = 1.85 eV. Systematic analysis on the solid film highlights the key role of the precursor–solvent interaction in the quantum well orientation, phase purity, grain size, surface quality, and optoelectronic properties, which can be well-tuned with addition of dimethyl sulfoxide (DMSO) into the N,N-dimethylformamide (DMF) precursor solution. These findings present opportunities for designing a high-quality RP film with well-controlled quantum well orientation, micrometer-sized grains, and optoelectronic properties. As a result, we achieved power conversion efficiency (PCE) up to 10.41%
|