|
- 2018
Sub-5 nm Monolayer Arsenene and Antimonene TransistorsDOI: https://doi.org/10.1021/acsami.8b03840 Abstract: Novel two-dimensional (2D) semiconductors arsenene and antimonene are promising channel materials for next-generation field effect transistors (FETs) because of the high carrier mobility and stability under ambient conditions. Stimulated by the recent experimental development of sub-5 nm 2D MoS2 FETs, we investigate the device performance of monolayer (ML) arsenene and antimonene in the sub-5 nm region by using accurate ab initio quantum transport simulation. We reveal that the optimized sub-5 nm double-gate (DG) ML arsenene and antimonene metal–oxide–semiconductor FETs (MOSFETs) can fulfill the low power requirements of the International Technology Roadmap for Semiconductors in 2028 until the gate length is scaled down to 4 nm. When the gate length is scaled down to 1 nm, the performances of the DG ML arsenene and antimonene MOSFETs are superior to that of the DG ML MoS2 MOSFETs in terms of the on-current. Therefore, 2D arsenene and antimonene are probably more suitable for ultrascaled FETs than 2D MoS2 in the post-silicon era
|