全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

Microelectromechanical Systems from Aligned Cellulose Nanocrystal Films

DOI: https://doi.org/10.1021/acsami.8b04985

Full-Text   Cite this paper   Add to My Lib

Abstract:

Microelectromechanical systems (MEMS) have become a ubiquitous part of a multitude of industries including transportation, communication, medical, and consumer products. The majority of commercial MEMS devices are produced from silicon using energy-intensive and harsh chemical processing. We report that actuatable standard MEMS devices such as cantilever beam arrays, doubly clamped beams, residual strain testers, and mechanical strength testers can be produced via low-temperature fabrication of shear-aligned cellulose nanocrystal (CNC) films. The devices had feature sizes as small as 6 μm and anisotropic mechanical properties. For 4 μm thick doubly clamped beams with the CNC aligned parallel to the devices’ long axes, the Young’s moduli averaged 51 GPa and the fracture strength averaged 1.1 GPa. These mechanical properties are within one-third of typical values for polysilicon devices. This new paradigm of producing MEMS devices from CNC extracted from waste biomass provides the simplicity and tunability of fluid-phase processing while enabling anisotropic mechanical properties on the order of those obtained in standard silicon MEMS

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133