全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

Multistimulus Responsive Actuator with GO and Carbon Nanotube/PDMS Bilayer Structure for Flexible and Smart Devices

DOI: https://doi.org/10.1021/acsami.8b08554

Full-Text   Cite this paper   Add to My Lib

Abstract:

Smart devices with abilities of perceiving, processing, and responding are attracting more and more attentions due to the emerging development of artificial intelligent systems, especially in biomimetic and intelligent robotics fields. Designing a smart actuator with high flexibility and multistimulation responsive behaviors to simulate the movement of creatures, such as weight lifting, heavy objects carrying via simple materials, and structural design is highly demanded for the development of intelligent systems. Herein, a soft actuator that can produce reversible deformations under the control of light, thermal, and humidity is fabricated by combining high photothermal properties of CNT/PDMS layer with the natural hydrophilic GO layer. Due to the asymmetric double-layer structure, the novel bilayer membrane-based actuator showed different bending directions under photothermal and humidity stimulations, resulting in bidirectional controllable bending behaviors. In addition, the actuation behaviors can be well controlled by directionally aligning the graphene oxide onto carbon nanotube/PDMS layer. The actuator can be fabricated into a series of complex biomimetic devices, such as, simulated biomimetic fingers, smart “tweezers”, humidity control switches, which has great potential applications in flexible robots, artificial muscles, and optical control medical devices

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133