全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

Sequence-Dependent Peptide Surface Functionalization of Metal–Organic Frameworks

DOI: https://doi.org/10.1021/acsami.8b05148

Full-Text   Cite this paper   Add to My Lib

Abstract:

We report a noncovalent surface functionalization technique for water-stable metal–organic frameworks using short peptide sequences identified via phage display. Specific frameworks-binding peptides were identified for crystalline Zn(MeIM)2 (MeIM: 2-methylimidazole, ZIF-8), semiamorphous Fe-BTC (BTC: 1,3,5-benzene-tricarboxylate), and Al(OH)(C4H2O4) (MIL-53(Al)–FA, FA: fumaric acid), and their thermodynamic binding affinities and specificities were measured. Electron microscopy, powder X-ray diffraction, and gas adsorption analysis confirmed that the peptide-functionalized frameworks retained similar characteristics compared to their as-synthesized counterparts. Confocal laser-scanning microscopy demonstrated that peptide was localized on the surface of the frameworks, whereas surface area measurements showed no evidence of pore blockage. Finally, we measured the pH-dependent release of fluorescein from peptide-functionalized frameworks and discovered that peptide binding can attenuate fluorescein release by improving framework stability under low pH conditions. Our results demonstrate that phage display can be used as a general method to identify specific peptide sequences with strong binding affinity to water-stable metal–organic frameworks and that these peptides can alter drug release kinetics by affecting framework stability in aqueous environments

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133