全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

Engineering of Hollow PdPt Nanocrystals via Reduction Kinetic Control for Their Superior Electrocatalytic Performances

DOI: https://doi.org/10.1021/acsami.8b08657

Full-Text   Cite this paper   Add to My Lib

Abstract:

Synthesis of hollow metal nanocrystals (NCs) is greatly attractive for their high active surface areas, which gives rise to excellent catalytic activity. Taking PdPt alloy nanostructure as an example, we designed a synthetic tactic for the preparation of hollow metal nanostructures by delicate control over the difference in the reduction kinetic of metal precursors. At a high reduction rate difference, the Pd layer forms from H2PdCl4 and is subsequently etched, leading to the formation of a hollow space. A solid PdPt structure is achieved when the reduction rate of Pd and Pt precursor is comparable. Obviously, the hollow space and composition are tunable as well by adjusting the reduction rate difference. More importantly, the prepared hollow PdPt nanostructures exhibit a branched outer, porous wall, and rough hollow interior. The branched outer and rough hollow interior provide the higher density of unsaturated atoms, whereas the porous wall serves as channels connecting the inner, outer, and reactive agents. Moreover, the periodic self-consistent density function theory suggests that the d-band theory density of state of the PdPt nanoalloys is upshifted in comparison to the monometallic component, which will beneficial for improvement in their catalytic performances. Electrocatalytic tests reveal that the PdPt bimetallic NCs, especially for Pt32Pd68 nanostructures, show excellent catalytic activity and stability toward methanol oxidation reaction owing to their special structures as well as compositions

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133