全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

Mechanistic Origin of the High Performance of [email protected] Bi2S3@N-Doped Carbon Nanowire Electrodes

DOI: https://doi.org/10.1021/acsnano.8b07319

Full-Text   Cite this paper   Add to My Lib

Abstract:

High-performance lithium-ion batteries are commonly built with heterogeneous composite electrodes that combine multiple active components for serving various electrochemical and structural functions. Engineering these heterogeneous composite electrodes toward drastically improved battery performance is hinged on a fundamental understanding of the mechanisms of multiple active components and their synergy or trade-off effects. Herein, we report a rational design, fabrication, and understanding of [email protected] Bi2S3@N-doped mesoporous carbon (C) composite anode, consisting of a Bi2S3 nanowire (NW) core within a hollow space surrounded by a thin shell of N-doped mesoporous C. This composite anode exhibits desirable rate performance and long cycle stability (700 cycles, 501 mAhg–1 at 1.0 Ag–1, 85% capacity retention). By in situ transmission electron microscopy (TEM), X-ray diffraction, and NMR experiments and computational modeling, we elucidate the dominant mechanisms of the phase transformation, structural evolution, and lithiation kinetics of the Bi2S3 NWs anode. Our combined in situ TEM experiments and finite element simulations reveal that the hollow space between the Bi2S3 NWs core and carbon shell can effectively accommodate the lithiation-induced expansion of Bi2S3 NWs without cracking C shells. This work demonstrates an effective strategy of engineering the [email protected] anodes and also sheds light onto harnessing the complex multistep reactions in metal sulfides to enable high-performance lithium-ion batteries

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133