全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

Ionic Liquid Selectively Facilitates CO2 Transport through Graphene Oxide Membrane

DOI: https://doi.org/10.1021/acsnano.8b00367

Full-Text   Cite this paper   Add to My Lib

Abstract:

Membrane separation of CO2 from H2, N2, or CH4 has economic benefits. However, the trade-off between selectivity and permanence in membrane separation is challenging. Here, we prepared a high-performance CO2-philic membrane by confining the [BMIM][BF4] ionic liquid to the nanochannels in a laminated graphene oxide membrane. Nanoconfinement causes the [BMIM][BF4] cations and anions to stratify. The layered anions facilitate CO2 transportation with a permeance of 68.5 GPU. The CO2/H2, CO2/CH4, and CO2/N2 selectivities are 24, 234, and 382, respectively, which are up to 7 times higher than that of GO-based membranes and superior to the 2008 Robeson upper bound. Additionally, the resultant membrane has a high-temperature resistance, long-term durability, and high-pressure stability, indicating its great potential for CO2 separation applications. Nanoconfining an ionic liquid into the two-dimensional nanochannels of a laminated membrane is a promising gas separation method and a nice system for investigating ionic liquid behavior in nanoconfined environments

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133