全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

An Innovative Deep Learning Algorithm for Drowsiness Detection from EEG Signal

DOI: https://doi.org/10.3390/computation7010013

Keywords: EEG, DCT, Deep Learning

Full-Text   Cite this paper   Add to My Lib

Abstract:

Abstract The development of detection methodologies for reliable drowsiness tracking is a challenging task requiring both appropriate signal inputs and accurate and robust algorithms of analysis. The aim of this research is to develop an advanced method to detect the drowsiness stage in electroencephalogram (EEG), the most reliable physiological measurement, using the promising Machine Learning methodologies. The methods used in this paper are based on Machine Learning methodologies such as stacked autoencoder with softmax layers. Results obtained from 62 volunteers indicate 100% accuracy in drowsy/wakeful discrimination, proving that this approach can be very promising for use in the next generation of medical devices. This methodology can be extended to other uses in everyday life in which the maintaining of the level of vigilance is critical. Future works aim to perform extended validation of the proposed pipeline with a wide-range training set in which we integrate the photoplethysmogram (PPG) signal and visual information with EEG analysis in order to improve the robustness of the overall approach. View Full-Tex

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133