全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

EMG Feature Selection and Classification Using a Pbest-Guide Binary Particle Swarm Optimization

DOI: https://doi.org/10.3390/computation7010012

Keywords: feature selection, classification, electromyography, binary particle swarm optimization, genetic algorithm, binary differential evolution, discrete wavelet transform

Full-Text   Cite this paper   Add to My Lib

Abstract:

Abstract Due to the increment in hand motion types, electromyography (EMG) features are increasingly required for accurate EMG signals classification. However, increasing in the number of EMG features not only degrades classification performance, but also increases the complexity of the classifier. Feature selection is an effective process for eliminating redundant and irrelevant features. In this paper, we propose a new personal best (Pbest) guide binary particle swarm optimization (PBPSO) to solve the feature selection problem for EMG signal classification. First, the discrete wavelet transform (DWT) decomposes the signal into multiresolution coefficients. The features are then extracted from each coefficient to form the feature vector. After which pbest-guide binary particle swarm optimization (PBPSO) is used to evaluate the most informative features from the original feature set. In order to measure the effectiveness of PBPSO, binary particle swarm optimization (BPSO), genetic algorithm (GA), modified binary tree growth algorithm (MBTGA), and binary differential evolution (BDE) were used for performance comparison. Our experimental results show the superiority of PBPSO over other methods, especially in feature reduction; where it can reduce more than 90% of features while keeping a very high classification accuracy. Hence, PBPSO is more appropriate for application in clinical and rehabilitation applications. View Full-Tex

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133