全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

An MBSE Approach for Development of Resilient Automated Automotive Systems

DOI: https://doi.org/10.3390/systems7010001

Keywords: MBSE, advanced driver assistance systems, automated driving systems, safety of the intended functionality, utility function, test scenario

Full-Text   Cite this paper   Add to My Lib

Abstract:

Abstract Advanced driver assistance and automated driving systems must operate in complex environments and make safety-critical decisions. Resilient behavior of these systems in their targeted operation design domain is essential. In this paper, we describe developments in our Model-Based Systems Engineering (MBSE) approach to develop resilient safety-critical automated systems. An MBSE approach provides the ability to provide guarantees about system behavior and potentially reduces dependence on in-vehicle testing through the use of rigorous models and extensive simulation. We are applying MBSE methods to two key aspects of developing resilient systems: (1) ensuring resilient behavior through the use of Resilience Contracts for system decision making; and (2) applying simulation-based testing methods to verify the system handles all known scenarios and to validate the system against potential unknown scenarios. Resilience Contracts make use of contract-based design methods and Partially Observable Markov Decision Processes (POMDP), which allow the system to model potential uncertainty in the sensed environment and thus make more resilient decisions. The simulation-based testing methodology provides a structured approach to evaluate the operation of the target system in a wide variety of operating conditions and thus confirm that the expected resilient behavior has indeed been achieved. This paper provides details on the development of a utility function to support Resilience Contracts and outlines the specific test methods used to evaluate known and unknown operating scenarios. View Full-Tex

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133