全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Stability Analysis with an NVH Minimal Model for Brakes under Consideration of Polymorphic Uncertainty of Friction

DOI: https://doi.org/10.3390/vibration2010009

Keywords: brake system, Complex Eigenvalue Analysis, friction induced vibrations, polymorphic uncertainty, fuzzy methods, Dynamic Friction Models, Data Driven Methods

Full-Text   Cite this paper   Add to My Lib

Abstract:

Abstract In brake systems, some dynamic phenomena can worsen the performance (e.g., fading, hot banding), but a major part of the research concerns phenomena which reduce driving comfort (e.g., squeal, judder, or creep groan). These dynamic phenomena are caused by specific instabilities that lead to self-excited oscillations. In practice, these instabilities can be investigated using the Complex Eigenvalues Analysis (CEA), in which positive real parts of the eigenvalues are identified to characterize instable regions. Measurements on real brake test benches or tribometers show that the coefficient of friction (COF), μ , is not a constant, but dynamic, system variable. In order to consider this aspect, the Method of Augmented Dimensioning (MAD) has been introduced and implemented, which couples the mechanical degrees of freedom of the brake system with the degrees of freedom of the friction dynamics. In addition to this, instability prediction techniques can often determine whether a system is stable or instable, but cannot eliminate the instability phenomena on a real brake system. To address this, the current work deals with the quantification of the relevant polymorphic uncertainty of the friction dynamics, wherein the aleatory and epistemic uncertainties are described simultaneously. Aleatory uncertainty is concerned with the stochastic variability of the friction dynamics and incorporated with probabilistic methods (e.g., a Monte Carlo simulation), while the epistemic uncertainty resulting from model uncertainties is modeled via fuzzy methods. The existing measurement data are collected and processed through Data Driven Methods (DDM) for the identification of the dynamic friction models and corresponding parameters. Total Variation Regularization is used for the evaluation of derivatives within noisy data. Using an established minimal model for brake squealing, this paper addresses the question of probabilities for instabilities and the degree of certainty with which this conclusion can be made. The focus is on a comparison between the conventional Coulomb friction model and a dynamic friction model in combination with the MAD. This shows that the quality of the predictive accuracy improves dramatically with the more precise friction model. View Full-Tex

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133