全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Efficient Model-Based Object Pose Estimation Based on Multi-Template Tracking and PnP Algorithms

DOI: https://doi.org/10.3390/a11080122

Keywords: model-based pose estimation, 3D pose estimation, homography decomposition, PnP problem, template tracking

Full-Text   Cite this paper   Add to My Lib

Abstract:

Abstract Three-Dimensional (3D) object pose estimation plays a crucial role in computer vision because it is an essential function in many practical applications. In this paper, we propose a real-time model-based object pose estimation algorithm, which integrates template matching and Perspective-n-Point (PnP) pose estimation methods to deal with this issue efficiently. The proposed method firstly extracts and matches keypoints of the scene image and the object reference image. Based on the matched keypoints, a two-dimensional (2D) planar transformation between the reference image and the detected object can be formulated by a homography matrix, which can initialize a template tracking algorithm efficiently. Based on the template tracking result, the correspondence between image features and control points of the Computer-Aided Design (CAD) model of the object can be determined efficiently, thus leading to a fast 3D pose tracking result. Finally, the 3D pose of the object with respect to the camera is estimated by a PnP solver based on the tracked 2D-3D correspondences, which improves the accuracy of the pose estimation. Experimental results show that the proposed method not only achieves real-time performance in tracking multiple objects, but also provides accurate pose estimation results. These advantages make the proposed method suitable for many practical applications, such as augmented reality. View Full-Tex

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133