全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Distinct air–water gas exchange regimes in low- and high-energy streams

DOI: https://doi.org/10.1038/s41561-019-0324-8

Full-Text   Cite this paper   Add to My Lib

Abstract:

Gas exchange across the air–water interface drives the flux of climate-relevant gases and is critical for biogeochemical processes in aquatic ecosystems. Despite the presence of mountain streams worldwide, we lack basic understanding of gas exchange through their turbulent surfaces, making global estimates of outgassing from streams and rivers difficult to constrain. Here we combine new estimates of gas transfer velocities from tracer gas additions in mountain streams with published data to cover streams differing in geomorphology and hydraulics. We find two different scaling relationships between the turbulence-induced energy dissipation rate and gas transfer velocity for low- and high-channel slope streams, indicating that gas exchange in streams exists in two states. We suggest that turbulent diffusion drives gas transfer velocity in low-energy streams; whereas turbulence entrains air bubbles in high-energy streams, and the resulting bubble-mediated gas exchange accelerates with energy dissipation rate. Gas transfer velocities in the high-energy streams are among the highest reported. Our findings offer a framework to include mountain streams in future estimates of gas fluxes from streams and rivers at the global scale

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133