|
- 2019
Bio-realistic synaptic characteristics in the cone-shaped ZnO memristive deviceDOI: https://doi.org/10.1038/s41427-018-0105-7 Abstract: We demonstrate inherent biorealistic synaptic plasticity functions in the Pt/n-ZnO/SiO2–x/Pt heterostructures, where the n-ZnO semiconductor is geometrically cone-shaped in the size of a few nanometers. The synaptic functions were achieved within a two-terminal, electroforming-free, and low-power rectifying diode-like resistive switching device. The important rate-dependent synaptic functions, such as the nonlinear transient conduction behavior, short- and long-term plasticity, paired-pulse facilitation, spike-rate-dependent plasticity and sliding threshold effect, were investigated in a single device. These characteristics closely mimic the memory and learning functions of those in biosynapses, where frequency-dependent identical spiking operations are mostly taking place, and we emulate these characteristics in the “Learning-Forgetting-Relearning” synaptic behavior. The switching dynamics in the cone-shaped n-ZnO semiconductor are correlated with the transport mechanism along the grain boundaries of the charged ion species, namely, oxygen vacancies and charged oxygen. The diffusion and generation/recombination of these defects have specific time scales of self-decay by virtue of the asymmetric profile of the n-ZnO cone defects. Finally, the essential biorealistic synaptic plasticity functions were discovered for the perspectives of dynamic/adaptive electronic synapse implementations in hardware-based neuromorphic computing
|