全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Bio-realistic synaptic characteristics in the cone-shaped ZnO memristive device

DOI: https://doi.org/10.1038/s41427-018-0105-7

Full-Text   Cite this paper   Add to My Lib

Abstract:

We demonstrate inherent biorealistic synaptic plasticity functions in the Pt/n-ZnO/SiO2–x/Pt heterostructures, where the n-ZnO semiconductor is geometrically cone-shaped in the size of a few nanometers. The synaptic functions were achieved within a two-terminal, electroforming-free, and low-power rectifying diode-like resistive switching device. The important rate-dependent synaptic functions, such as the nonlinear transient conduction behavior, short- and long-term plasticity, paired-pulse facilitation, spike-rate-dependent plasticity and sliding threshold effect, were investigated in a single device. These characteristics closely mimic the memory and learning functions of those in biosynapses, where frequency-dependent identical spiking operations are mostly taking place, and we emulate these characteristics in the “Learning-Forgetting-Relearning” synaptic behavior. The switching dynamics in the cone-shaped n-ZnO semiconductor are correlated with the transport mechanism along the grain boundaries of the charged ion species, namely, oxygen vacancies and charged oxygen. The diffusion and generation/recombination of these defects have specific time scales of self-decay by virtue of the asymmetric profile of the n-ZnO cone defects. Finally, the essential biorealistic synaptic plasticity functions were discovered for the perspectives of dynamic/adaptive electronic synapse implementations in hardware-based neuromorphic computing

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133