|
- 2019
Polymeric foams for flexible and highly sensitive low-pressure capacitive sensorsDOI: https://doi.org/10.1038/s41528-019-0052-6 Abstract: Flexible low-pressure sensors (?<10?kPa) are required in areas as diverse as blood-pressure monitoring, human–computer interactions, robotics, and object detection. For applications, it is essential that these sensors combine flexibility, high sensitivity, robustness, and low production costs. Previous works involve surface micro-patterning, electronic amplification (OFET), and hydrogels. However, these solutions are limited as they involve complex processes, large bias voltages, large energy consumption, or are sensitive to evaporation. Here, we report a major advance to solve the challenge of scalable, efficient and robust e-skin. We present an unconventional capacitive sensor based on composite foam materials filled with conductive carbon black particles. Owing to the elastic buckling of the foam pores, the sensitivity exceeds 35?kPa?1 for pressure <0.2?kPa. These performances are one order of magnitude higher than the ones previously reported. These materials are low-cost, easy to prepare, and display high capacitance values, which are easy to measure using low-cost electronics. These materials pave the road for the implementation of e-skin in commercialized applications
|