全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

An atom-to-circuit modeling approach to all-2D metal–insulator–semiconductor field-effect transistors

DOI: https://doi.org/10.1038/s41699-018-0073-3

Full-Text   Cite this paper   Add to My Lib

Abstract:

Vertical stacking of heterogeneous two-dimensional (2D) materials has received considerable attention for nanoelectronic applications. In the semiconductor industry, however, the process of integration for any new material is expensive and complex. Thus, first principles-based models that enable systematic performance evaluation of emerging 2D materials at device and circuit level are in great demand. Here, we propose an ‘atom-to-circuit’ modeling framework for all-2D MISFET (metal–insulator–semiconductor field-effect transistor), which has recently been conceived by vertically stacking semiconducting transition metal dichalcogenide (e.g., MoS2), insulating hexagonal boron nitride and semi-metallic graphene. In a multi-scale modeling approach, we start with the development of a first principles-based atomistic model to study fundamental electronic properties and charge transfer at the atomic level. The energy band-structure obtained is then used to develop a physics-based compact device model to assess transistor characteristics. Finally, the models are implemented in a circuit simulator to facilitate design and simulation of integrated circuits. Since the proposed modeling framework translates atomic level phenomena (e.g., band-gap opening in graphene or introduction of semiconductor doping) to a circuit performance metric (e.g., frequency of a ring oscillator), it may provide solutions for the application and optimization of new materials

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133