全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

Spatially controlled electrostatic doping in graphene p-i-n junction for hybrid silicon photodiode

DOI: https://doi.org/10.1038/s41699-018-0080-4

Full-Text   Cite this paper   Add to My Lib

Abstract:

Sufficiently large depletion region for photocarrier generation and separation is a key factor for two-dimensional material optoelectronic devices, but only a few device configurations have been explored for a deterministic control over the space charge region area in graphene with convincing scalability. Here we investigate a graphene-silicon p-i-n photodiode defined in a foundry processed planar photonic crystal waveguide structure, achieving visible—near-infrared, zero-bias, and ultrafast photodetection. Graphene is electrically contacting to the wide intrinsic region of silicon and extended to the p an n doped region, functioning as the primary photocarrier conducting channel for electronic gain. Graphene significantly improves the device speed through ultrafast out-of-plane interfacial carrier transfer and the following in-plane built-in electric field assisted carrier collection. More than 50?dB converted signal-to-noise ratio at 40?GHz has been demonstrated under zero bias voltage, the quantum efficiency could be further amplified by hot carrier gain on graphene-i Si interface and avalanche process on graphene-doped Si interface. With the device architecture fully defined by nanomanufactured substrate, this work demonstrates post-fabrication-free two-dimensional material active silicon photonic devices

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133