全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

Tuning topological phase and quantum anomalous Hall effect by interaction in quadratic band touching systems

DOI: https://doi.org/10.1038/s41535-018-0120-5

Full-Text   Cite this paper   Add to My Lib

Abstract:

Interaction-driven topological phases significantly enrich the class of topological materials and thus are of great importance. Here, we study the phase diagram of interacting spinless fermions filling the two-dimensional checkerboard lattice with a quadratic band touching (QBT) point. By developing new diagnosis based on the state-of-the-art density-matrix renormalization group and exact diagonalization, we determine accurate quantum phase diagram for such a system at half-filling with three distinct phases. For weak nearest-neighboring interactions, we demonstrate the instability of the QBT towards an interaction-driven spontaneous quantum anomalous Hall (QAH) effect. For strong interactions, the system breaks the rotational symmetry realizing a nematic charge-density-wave (CDW) phase. Interestingly, for intermediate interactions we discover a symmetry-broken bond-ordered critical phase sandwiched in between the QAH and CDW phases, which splits the QBT into two Dirac points driven by interaction. Instead of the direct transition between QAH and CDW phases, our identification of an intermediate phase sheds new light on the theoretical understanding of the interaction-driven phases in QBT systems

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133