全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

Unraveling a novel ferroelectric GeSe phase and its transformation into a topological crystalline insulator under high pressure

DOI: https://doi.org/10.1038/s41427-018-0081-y

Full-Text   Cite this paper   Add to My Lib

Abstract:

Germanium selenide is a promising material for electronic, photovoltaic, and thermoelectric applications; however, structural phase transitions of GeSe under pressure are controversial. Combining evolutionary algorithms, density functional theory, tight-binding method, and laser-heated diamond anvil cell experiments, pressure-induced phase transitions of GeSe are thoroughly investigated. Two novel intermediate phases are predicted to exist in between the well-known α-GeSe and the recently discovered β-GeSe under high pressure. α-GeSe is found to transform into a rhombohedral crystal structure with a space group of R3m at a low hydrostatic pressure. The R3m phase of GeSe exhibits robust ferroelectricity analogous to GeTe. By further increasing the pressure to approximately 6?GPa, the R3m phase is predicted to transform into a rock-salt structure, becoming a 3D topological crystalline insulator with an inverted band structure. The newly discovered GeSe high-pressure phases greatly enrich our knowledge of IV–VI compounds

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133