全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Evaluating digital medicine ingestion data from seriously mentally ill patients with a Bayesian Hybrid Model

DOI: https://doi.org/10.1038/s41746-019-0095-z

Full-Text   Cite this paper   Add to My Lib

Abstract:

The objective of this work was to adapt and evaluate the performance of a Bayesian hybrid model to characterize objective temporal medication ingestion parameters from two clinical studies in patients with serious mental illness (SMI) receiving treatment with a digital medicine system. This system provides a signal from an ingested sensor contained in the dosage form to a patient-worn patch and transmits this signal via the patient’s mobile device. A previously developed hybrid Markov-von Mises model was used to obtain maximum-likelihood estimates for medication ingestion behavior parameters for individual patients. The individual parameter estimates were modeled to obtain distribution parameters of priors implemented in a Markov chain-Monte Carlo framework. Clinical and demographic covariates associated with model ingestion parameters were also assessed. We obtained individual estimates of overall observed ingestion percent (median:75.9%, range:18.2–98.3%, IQR:32.9%), rate of excess dosing events (median:0%, range:0–14.3%, IQR:3.0%) and observed ingestion duration. The modeling also provided estimates of the Markov-dependence probabilities of dosing success following a dosing success or failure. The ingestion-timing deviations were modeled with the von Mises distribution. A subset of 17 patients (22.1%) were identified as prompt correctors based on Markov-dependence probability of a dosing failure followed by a dosing success of unity. The prompt corrector sub-group had a better overall digital medicine ingestion parameter profile compared to those who were not prompt correctors. Our results demonstrate the potential utility of a Bayesian Hybrid Markov-von Mises model for characterizing digital medicine ingestion patterns in patients with SMI

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133