全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

The computational landscape of general physical theories

DOI: https://doi.org/10.1038/s41534-019-0156-9

Full-Text   Cite this paper   Add to My Lib

Abstract:

There is good evidence that quantum computers are more powerful than classical computers, and that various simple modifications of quantum theory yield computational power that is dramatically greater still. However, these modifications also violate fundamental physical principles. This raises the question of whether there exists a physical theory, allowing computation more powerful than quantum, but which still respects those fundamental physical principles. Prior work by two of us introduced this question within a suitable framework for theories that make good operational sense, and showed that in any theory satisfying tomographic locality, the class of problems that can be solved efficiently is contained in the complexity class AWPP. Here, we show that this bound is tight, in the sense that there exists a theory, satisfying tomographic locality, as well as a basic principle of causality, which can efficiently decide everything in AWPP. Hence this theory can efficiently simulate any computation in this framework, including quantum computation

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133