|
- 2014
Segmentación y clasificación de imágenes SAR en zonas de inundación en Colombia, una herramienta computacional para prevención de desastresKeywords: SAR, Clasi?cacion, Segmentaciónn Abstract: La detección de zonas de inundación es fundamental para la prevención de desastres, por este motivo en este trabajo se presenta una herramienta computacional desarrollada en MATLAB que ofrece una alternativa a las existentes en el mercado para la clasificación supervisada de imágenes SAR (Synthetic Aperture Radar) de zonas de inundación. En particular se usaron diferentes métodos de clasificación para seleccionar de acuerdo al desempe?o el mejor para el estudio de zonas de inundación en Colombia.Los datos de entrenamiento fueron generados con los resultados de las segmentaciones Fuzzy-Clustering, K-means y Region-Growing sobre imágenes SAR de zonas de inundación. Los métodos de clasificación implementados fueron un clasificador basado en el método Bayesiano y un clasificador basado en máquinas de vectores de soporte (SVM). Para evaluar el desempe?o de los clasificadores se utilizaron índices como la exactitud total, la exactitud dependiendo del usuario, el índice Kappay R’. De acuerdo a los resultados el clasificador basado en máquinas de soporte presenta mayor exactitud; sin embargo, el clasificador bayesiano se desempe?a mejor clasificando pixeles que corresponden a poblaciones, aun con pocos datos de entrenamiento
|