全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2014 

Quality measures for fuzzy predicates in conjunctive and disjunctive normal forms

Keywords: data mining, fuzzy predicate, quality measures, conjunctive and disjunctive normal forms

Full-Text   Cite this paper   Add to My Lib

Abstract:

Association rule mining is a very popular data mining technique. Rules in this technique are often used to identify and represent dependencies between attributes in databases. Specifically, fuzzy association rules are rules that use the concepts of fuzzy sets and can be considered as a special case of fuzzy predicates. Many quality measures have been defined for fuzzy association rules, but all consider a specific structure: antecedent and consequence. In the case of fuzzy predicates in the normal form (i.e., conjunctive or disjunctive), it is necessary to define different quality measures that do not consider the structure as an antecedent or a consequence. The only available measure for this scenario is the fuzzy predicate truth value (FPTV), which has serious limitations. The evaluation of fuzzy predicates in the normal form through appropriate quality measures has not yet been clearly defined in the literature. Thus, we propose several quality measures specifically for fuzzy predicates in the conjunctive (CNF) and disjunctive (DNF) normal forms. Experimental studies illustrate the use of the proposed measures and allow some general conclusions about each measure

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133