全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

基于卷积神经网络和池化算法的表情识别研究

DOI: 10. 3969 / j. issn. 1673-629X. 2019. 01. 013

Keywords: 卷积神经网络, 池化算法, 人脸表情识别, 深度学习, 特征提取

Full-Text   Cite this paper   Add to My Lib

Abstract:

卷积神经网络(CNN)能够通过神经网络自主学习提取图像中的特征,并且具有局部响应、权值共享等优点,在人脸表情识别中获得了广泛的应用.池化算法是CNN的核心技术之一,通过对卷积层的特征进行聚合统计,池化算法可以减少CNN的特征维度,提高特征表征能力,但是目前常用的池化算法还存在提取特征单一,缺乏灵活性的情况.为了克服现有池化算法的不足,根据深度学习可采用BP算法自主调节参数的特性,提出一种改进的自适应池化算法.该算法在训练过程中能够根据损失函数,不断更新池化域的参数,最终使表情预测值和真实结果值之间的差值达到最小.基于CK+人脸表情数据库的实验结果表明,与现有池化算法相比,提出的自适应池化算法能有效提高表情识别准确率

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133