全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

基于属性相关性的KNN近邻填补算法改进

DOI: 10.13265/j.cnki.jxlgdxxb.2019.01.016

Keywords: KNN填补, 主成分分析, 协方差, 离差, 属性影响量

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了进一步提高缺失数据的填补效果和降低数据缺失比例带来的影响,提出了基于属性相关的KNN近邻填补算法. 将主成份分析算法应用到KNN填补算法中,先用KNN算法计算得到的数值作为主体填补值,然后使用主成分分析过程中产生的协方差矩阵作为整体属性的相关性. 由缺失项和K个近邻的离差和相应相关性算出属性影响量,最后并入到KNN计算值之中,得到的数值就是算法改进后的最终估算数值. 经数据集仿真实验,算法改进后填补效果更好准确度更高

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133