|
计算机应用 2018
基于特征匹配和距离加权的蓝牙定位算法DOI: 10.11772/j.issn.1001-9081.2018020295 Keywords: iBeaon信标,聚类分析,特征匹配,距离加权,行人定位 Abstract: 摘要 针对传统iBeacon指纹定位技术中接收信号强度值(RSSI)波动较大、指纹库聚类复杂、存在较大跳变性定位误差等问题,提出一种基于排序特征匹配和距离加权的蓝牙定位算法。在离线阶段,该算法先对RSSI进行加权滑动窗处理,然后根据RSSI向量大小生成排序特征码等值,并与位置坐标等信息组成指纹信息,形成指纹库;在在线定位阶段,根据排序特征向量指纹匹配定位算法和基于距离的最优加权K最邻近法(WKNN)实现室内行人定位。在定位仿真实验中,该算法可以自动根据特征码进行聚类,从而降低了聚类的复杂度,能实现最大误差在0.952 m内的室内行人定位精度
|