全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于融合型深度学习的滚动轴承亚健康识别算法

DOI: 10.11772/j.issn.1001-9081.2017112702

Keywords: 深度学习,亚健康识别,相关向量机,D-S证据理论,滚动轴承

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 深度学习模型增加了隐含层的层数,使得该模型在语音识别、图像视频分类等方面取得了不错的效果;但建立一个适合特定对象的模型需要大量的数据集来训练,而且需要较长时间才能获得合适的权重和偏置,为此提出一种基于深度自动编码器-相关向量机网络模型的滚动轴承亚健康诊断方法。首先,采集滚动轴承振动信号并进行傅里叶变换和归一化处理;其次,设计改进的自动编码器-稀疏边缘降噪自动编码器,结合了稀疏自动编码器和边缘降噪自动编码器的特点;接着建立深度自动编码器-相关向量机网络模型,用有监督的函数对各个隐含层的参数进行微调,并利用相关向量机(RVM)进行训练;最后将得到的分类根据D-S证据理论融合并得出最终的分类结果。实验结果表明所提算法能有效提高滚动轴承"亚健康"状态的识别精度,纠正错误分类

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133