全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于迁移学习与多标签平滑策略的图像自动标注

DOI: 10.11772/j.issn.1001-9081.2018041349

Keywords: 图像自动标注,多标签平滑,迁移学习,卷积神经网络,图像检索

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 针对图像标注数据集标签分布不平衡问题,提出了基于标签平滑策略的多标签平滑单元(MLSU)。MLSU在网络模型训练过程中自动平滑数据集中的高频标签,使网络适当提升了低频标签的输出值,从而提升了低频标注词的标注性能。为解决图像标注数据集样本数量不足造成网络过拟合的问题,提出了基于迁移学习的卷积神经网络(CNN)模型。首先利用互联网上的大型公共图像数据集对深度网络进行预训练,然后利用目标数据集对网络参数进行微调,构建了一个多标签平滑卷积神经网络模型(CNN-MLSU)。分别在Corel5K和IAPR TC-12图像标注数据集上进行实验,在Corel5K数据集上,CNN-MLSU较卷积神经网络回归方法(CNN-R)的平均准确率与平均召回率分别提升了5个百分点和8个百分点;在IAPR TC-12数据集上,CNN-MLSU较两场K最邻近模型(2PKNN_ML)的平均召回率提升了6个百分点。实验结果表明,基于迁移学习的CNN-MLSU方法能有效地预防网络过拟合,同时提升了低频词的标注效果

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133