|
计算机应用 2016
自适应加权全变分的低剂量CT统计迭代算法DOI: 10.11772/j.issn.1001-9081.2016.10.2916 Keywords: 低剂量计算机断层扫描,统计迭代重建,惩罚加权最小二乘,全变分,加权方差 Abstract: 摘要 针对低剂量计算机断层扫描(LDCT)重建图像时出现条形伪影和脉冲噪声的现象,提出一种自适应加权全变分的LDCT统计迭代重建算法。该算法克服了传统全变分(TV)算法在去除条形伪影的同时引入阶梯效应的缺点,把基于加权方差的加权因子与TV模型相结合提出自适应加权全变分模型,然后再把新模型应用到惩罚加权最小二乘(PWLS)重建算法中,这样就可以对图像的不同区域进行不同强度的去噪,从而取得噪声抑制和边缘保持的良好效果。采用Shepp-Logan模型和数字骨盆体模来验证算法的有效性,实验结果表明,所提算法的归一化均方距离和归一化平均绝对距离均比滤波反投影(FBP)、PWLS、惩罚加权最小二乘的中值先验(PWLS-MP)以及惩罚加权最小二乘的全变分(PWLS-TV)算法的值小,且可分别获得40.91 dB和42.25 dB的峰值信噪比。实验结果表明,该算法重建出的图像在有效去除条形伪影的同时对图像的边缘和细节起到很好的保护作用
|