全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

激光散乱点云K最近邻搜索算法

DOI: 10.11772/j.issn.1001-9081.2016.10.2863

Keywords: 散乱点云,子空间,K最近邻,广义表

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 针对激光散乱点云的数据量大,且具有面型的特点,为降低存储器使用量,提高散乱点云的处理效率,提出了一种散乱点云K最近邻(KNN)搜索算法。首先,利用多级分块、动态链表的存储方式,只存储非空的子空间编号。对相邻子空间进行3进制编码,利用编码的对偶关系,建立相邻子空间之间的指针连接,构造出包含KNN搜索所需的各类信息的广义表,然后再搜索KNN。KNN搜索过程中,在计算被测点到候选点距离时,直接删除筛选立方体内切球之外的点,可将参入按距离排序的候选点数减少为现有算法的一半。依赖K值和不依赖K值的分块原则,均可计算不同的K邻域。实验结果表明,该算法不仅具有低的存储器使用量,而且具有较高的效率

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133