全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于相空间重构的自适应残差修正支持向量回归预测算法

DOI: 10.11772/j.issn.1001-9081.2016.11.3229

Keywords: 支持向量回归,多步预测,误差累积,相空间重构,残差

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 针对模拟电路故障预测存在的非线性时间序列预测问题和传统支持向量回归(SVR)多步预测时出现的误差累积问题,提出了一种基于相空间重构的自适应残差修正SVR预测算法。首先,分析了SVR多步预测方法对时间序列趋势预测的意义和多步预测导致的误差积累问题;其次,将相空间重构技术引入SVR预测中,对表征模拟电路状态的时间序列进行相空间重构,并进而进行SVR预测;然后,在对多步预测过程中产生的误差累积序列进行二次SVR预测的基础上,实现对初始预测误差的自适应修正;最后,对所提算法进行了预测仿真验证。仿真验证和模拟电路的健康度预测实验结果表明,所提算法能有效降低多步预测导致的误差积累,显著提高回归估计精度,更好地预测模拟电路状态的变化趋势

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133