全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于自适应改进粒子群优化的数据离散化算法

DOI: 10.11772/j.issn.1001-9081.2016.01.0188

Keywords: 经典粗糙集,自适应,粒子群优化,离散化,禁忌搜索

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 针对经典粗糙集只能处理离散型属性的问题,提出一种基于自适应混合粒子群优化(AHPSO)的离散化算法。首先,引入自适应调整策略,以克服粒子群易陷入局部解的缺点,提高了粒子群全局寻优能力;然后对每一代全局最优粒子进行禁忌搜索(TS),得到当代最佳全局最优粒子,增强了粒子群局部搜索能力;最后,在保持决策表分类能力不变的情况下,将属性离散化分割点初始化为粒子群体,通过粒子间的相互作用得到最佳的离散化分割点。使用WEKA平台上的J48决策树分类方法,与基于属性重要度、信息熵的离散化算法相比,该算法的分类精度提升了10%~20%;与基于小生境离散粒子群优化(NDPSO)、参数线性递减粒子群的离散化算法相比,该算法的分类精度提升了2%~5%。实验结果表明,该算法显著地提高了J48决策树的分类学习精度,在对数据离散化时也有较好的性能

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133