全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于梯度提升决策树的微博虚假消息检测

DOI: 10.11772/j.issn.1001-9081.2017082368

Keywords: 微博,社交网络,虚假消息,梯度提升决策树,评论

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 微博是信息共享的重要平台,同时,也成为虚假消息产生和推广的重要平台,虚假消息的传播严重扰乱了社会秩序。为了快速、有效地识别微博虚假消息,提出一种基于梯度提升决策树(GBDT)的虚假消息检测方法。首先,从评论的角度分析微博虚假消息和真实消息之间存在的差异,在此基础上提取评论中的文本内容、用户属性,信息传播和时间特性的分类特征;然后,基于分类特征,采用GBDT算法实现微博虚假消息识别模型;最后,在两个真实的微博数据集上进行验证。实验结果表明,基于GBDT的识别模型能有效提高微博虚假消息检测的准确率

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133