全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于灰狼群智能最优化的神经网络PM2.5浓度预测

DOI: 10.11772/j.issn.1001-9081.2017.10.2854

Keywords: 灰狼优化算法,BP神经网络,PM2.5浓度预测,预测模型,空气污染物

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 针对目前PM2.5浓度测量成本高和测量过程繁杂等问题,建立了基于灰狼群智能最优化算法的神经网络预测模型。从非机理模型的角度,结合气象因素和空气污染物对上海市的PM2.5浓度进行预测,并使用平均影响值分析了影响PM2.5浓度的重要因素。使用灰狼群智能算法优化神经网络的过程中,引入了检验样本实时监控训练过程以避免发生"过训练"现象,确保建立的神经网络模型具有较好的泛化能力。实验结果表明:PM10对PM2.5的影响最为显著,其次是CO和前一天PM2.5。选取2016年11月1日-12日的数据进行验证,其平均相对误差为13.46%,平均绝对误差为8μg/m3,与粒子群算法优化的神经网络、BP神经网络模型及支持向量回归(SVR)模型的误差相比,平均相对误差分别下降了约3个百分点、5个百分点和1个百分点。因此,使用灰狼算法优化的神经网络更适合上海市PM2.5浓度的预测和空气质量的预报

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133